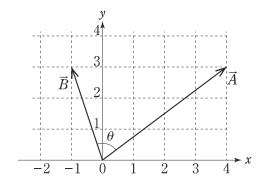
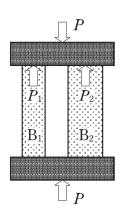
例題 大学卒業程度(専門・機械01)

図のように、二つのベクトル \vec{A} 、 $ar{B}$ がある。二つのベクトルのなす角をhetaとした とき、 $\cos \theta$ の値はいくらか。



$$2. \frac{3}{\sqrt{10}}$$

$$3. \frac{1}{\sqrt{13}}$$


$$4 \cdot \frac{3}{\sqrt{13}}$$

$$3 \cdot \frac{1}{\sqrt{13}} \\
4 \cdot \frac{3}{\sqrt{13}} \\
5 \cdot \frac{1}{3\sqrt{13}}$$

図のように、同じ長さの棒を2本並べ、両端を剛性板に溶接したものを荷重Pで圧縮する。一方の棒 B_1 は断面積 A_1 、縦弾性係数 E_1 であり、もう一方の棒 B_2 は断面積 A_2 、縦弾性係数 E_2 である。このとき、棒 B_1 、 B_2 に作用する圧縮荷重 P_1 、 P_2 はそれぞれどのように表されるか。

ただし、剛性板は常に棒に垂直であり、荷重Pは剛性板に垂直に加わるものとする。

$$P_{1} \qquad P_{2}$$

$$1. \frac{A_{1}E_{1}}{A_{1}E_{1} + A_{2}E_{2}}P \qquad \frac{A_{2}E_{2}}{A_{1}E_{1} + A_{2}E_{2}}P$$

$$2. \frac{A_{2}E_{2}}{A_{1}E_{1} + A_{2}E_{2}}P \qquad \frac{A_{1}E_{1}}{A_{1}E_{1} + A_{2}E_{2}}P$$

$$3. \frac{P}{2} \qquad \frac{P}{2}$$

$$4. \frac{E_{1}}{E_{1} + E_{2}}P \qquad \frac{E_{2}}{E_{1} + E_{2}}P$$

$$5. \frac{E_{2}}{E_{1} + E_{2}}P \qquad \frac{E_{1}}{E_{1} + E_{2}}P$$